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ABSTRACT
Intelligent social agents provide means to improve student
learning and motivation in an educational setting, and sup-
port students in a personalized manner. Current educational
theory suggests that learning in an interactive setting is best
when students are participating equally. We aim to use rein-
forcement learning (RL) to teach an intelligent social agent
to use gaze, gesture, and dialogue to maintain and improve
students’ participation. Performing reinforcement learning
in the real world is often intractable, generally requiring
some pre-training in an artificial domain. We examine a
data-driven approach using previously collected data to sim-
ulate interactions in an educational group setting.
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1. INTRODUCTION
Consider the scenario of interacting with an intelligent teach-
able robot, which is designed to facilitate collaborative learn-
ing, by encouraging student engagement and providing intel-
ligent feedback to students. Reinforcement Learning (RL)
provides means for this teachable robot to adapt to the stu-
dents, which can result in a more personalized learning ex-
perience. We are investigating how a teachable robot can
use gesture, gaze, and dialogue, to enhance students’ collab-
orative learning within math.

2. BACKGROUND
Teachable robots have demonstrated potential improvements
for student learning and motivation, in an educational set-
ting [8][9]. For our setting, we investigate a teachable agent
(named Emma) in the role of an intelligent social agent, used
to teach and learn with a small group of students. Previ-
ous work has demonstrated that empathetic robots in this
peer tutoring scenario have been favorable when compared
to a human facilitator, by producing more meaningful di-

alogue between the students [1]. In a one-on-one setting,
teachable robots have also demonstrated improvements in
student learning and motivation [13][7]. Here we consider
the dyadic setting, where the robot learns math with two
students. This collaborative learning setting offers benefits
in terms of educational theory but creates additional com-
plexity for RL; the intelligent agent needs to keep track of
both interactions between itself and the students, as well as
the interactions between the two students.

2.1 Theoretical Frameworks
Our current work follows the theory set forth by the interactive-
constructive-active-passive (ICAP) framework of cognitive
engagement [2]. ICAP hypothesizes that learning in an
interactive setting is best when both students contribute
constructively and participate equally. Lexical entrainment
(LE) measures the similarity between the language used by
speakers in a group over time. LE has demonstrated a corre-
lation to student success in group settings [6]. Our teachable
robot will attempt to use a combination of gaze, gesture,
and dialogue to maintain and improve the group’s balance
of participation, and promote lexical entrainment.

2.2 Reinforcement Learning
To learn the best usage of gaze and gesture, we look to RL
to automatically learn which behaviors best encourage bal-
anced participation and LE. However, reinforcement learn-
ing in the real world is particularly difficult, due to the sam-
ple inefficiency of online RL algorithms, and the high level
of environmental variance that can be present in the real
world. For that reason, many deployments of RL in the real
world involve using a policy that is initially trained in an
artificial domain, typically a computer simulation, and then
is transferred, and trained further in the real world.

Reinforcement learning in education typically involved mod-
eling the learner to provide a more personalized learning
experience [5][3], although more recent works are model-free
[12]. We describe our work towards developing a data-driven
simulation of Emma’s student interactions for a more per-
sonalized learning experience, without modeling the learner.

3. METHODS
3.1 Data Collection
Virtual sessions were held using an online video-chat service
to connect the students with Emma, the teachable robot.
For our pilot studies, we collected data from undergraduate
students, who interacted with the robot in groups of two.



Figure 1: The distribution of actions that were taken by the
teachable robot during each session (group).

Twenty-eight participants were provided a series of math
questions, specifically about ratios, and were instructed to
work together to answer the questions and describe the so-
lution to the teachable robot. In total, 14 sessions have been
held between Emma and the students. Each session lasted
approximately 30 minutes. Students used an in-house web
interface to see the math problem that the robot was solv-
ing, to advance to the next step of the problem, to “push
to speak” with the robot, and to see what the robot most
recently said (as a backup to hearing it over the video-chat
service).

The video feeds from each session (group) were recorded,
along with the audio from each participant. The partici-
pants also completed surveys assessing student beliefs and
goals related to math learning, technology, and collabora-
tion. They worked on two sets of ratio problems, one before
the interaction with the robot, and one after. The study
was done under IRB protocol. The audio feeds for each
participant were transcribed using an automatic Speech-to-
Text system, with word timings maintained. The face area
of each participant was extracted from the video feeds for
analysis.

3.2 Indicators for Participant Responses
Our approach for creating a data-driven simulation involves
capturing the change in various indicator metrics after Emma
performs an action, which is used to approximate the bal-
ance of participation, lexical entrainment, and emotional re-
sponse. Recent studies indicate that a learner’s emotions,
specified valence, and arousal, have a significant effect on
some learning outcomes [4]. We call these changes in indi-
cators an ”indicator response”.

The indicator response is formally defined as the difference
between the indicator at some time point during the session
and the average indicator value over the next 30 seconds. An
“action response” describes the indicator response following
an action performed by Emma. Capturing action responses
allows for analysis regarding Emma’s effects on students.

We consider participants’ action responses to Emma us-
ing four indicators, Measure of Participation (MoP), Word
Co-Occurrence (WCO), Valence (Val), and Arousal (Aro).

Figure 2: The two actions, “shrug” and“akimbo”, that Emma
can perform.

These indicators are used to approximate the balance of par-
ticipation, lexical entrainment, and emotional response. The
action responses captured by these indicators will be directly
used to construct an environment that is described as a func-
tion of the set of indicators. When the simulated robot acts,
the indicators transform based on a sample response in the
data.

3.2.1 Measure of Participation (MoP)
MoP indicates the balance of group participation as pro-
posed by Paletz and Schunn [11]. MoP computes the av-
erage level of participation in the group, scaled between 0
(equal) and 1 (dominated) participation. This metric “pro-
vides an unbiased estimate across groups of different sizes
and across those that change size over time” [11]. However,
in our simplified setting, our groups are consistent in size
and do not change in size over time (n = 2).

3.2.2 Word Co-Occurrence (WCO)
WCO provides a simple estimate of lexical entrainment.
WCO is defined as the number of words said that are com-
mon between both participants. The size of the shared set
of words increases only if both participants are contributing
and talking about similar material.

3.2.3 Valence (Val)
Facial expressions are used to estimate the students’ emo-
tions, using the off-the-shelf package, AffectNet [10]. Va-
lence describes the spectrum of facial emotions from posi-
tive to negative. We use this indicator to approximate the
immediate emotional response to Emma’s actions from both
students.

3.2.4 Arousal (Aro)
Arousal describes student emotion concerning how aroused
(excited) the individual is, on a spectrum from “active” to
“passive”. Arousal is also captured using facial expressions
and AffectNet [10].

3.3 Robot Actions
During the pilot studies, Emma performed two actions, us-
ing a hand-coded deterministic policy. Emma is (1) capable
of shrugging and (2) standing with her arms akimbo, called
“shrug” and “akimbo” respectively.

See Figure 2 for a demonstration of each pose. For the shrug
action, the robot raises both arms, with open palms towards
the sky. The robot puts her arms on her hips for the akimbo
action, with her elbows extended outwards. These actions
are performed to accompany her speech. For instance, she



Figure 3: A comparison between the action responses for each
group using the Measure of Participation indicator.

performs the “shrug” action when asking a question. The
distribution of the action usage is described in Figure 1.

4. RESULTS
4.1 Action Indicator Responses
4.1.1 Measure of Participation

Figure 3 shows the observed action indicator responses for
each group and the difference in response per action type.
On average, the akimbo action results in a more equal MoP,
with an average of −0.016, compared to an average response
of −0.007 for the shrug (lower is better).

4.1.2 Word Co-Occurrence
WCO varies depending on the group, but less so than Mea-
sure of Participation. We see a higher average increase in
WCO after the shrug action compared to akimbo. Shrugs
provide a mean Word Co-occurrence action response of 0.115,
while akimbo provides an average response of 0.090, higher
being better. Figure 4 depicts the action responses for each
group.

4.1.3 Valence
Figure 5 describes the change in group valence after actions.
The shrug action increased valence and while the akimbo
saw a slight decrease, with values 0.017 and −0.0007 re-
spectively. There is a notable difference in groups’ action
indicator response variance, with groups 2, 7, and 12 demon-
strating particularly high variance.

4.1.4 Arousal
Figure 6 provides the action responses per group for the
arousal indicator. Shrugs see a slight decrease of arousal,
−0.026, whereas the akimbo action provides a slight posi-
tive change, 0.005. The trend in groups’ action indicator
response variances continues; the same set of groups exhibit
high variance.

Figure 4: A comparison between the action responses for each
group using the Word Co-Occurence indicator.

Figure 5: A comparison between the action responses for each
group using the Valence indicator.

Metric Shrug Akimbo No Action
MoP -0.007 -0.016 0.036
WCO 0.115 0.090 0.155

Val 0.017 -0.0007 -0.016
Aro -0.026 0.005 0.005

Table 1: The average indicator response for each action, and
the average indicator response after periods of no action.



Figure 6: A comparison between the action responses for each
group using the Arousal indicator.

Figure 7: A comparison of the average action response dis-
tributions for each action, over all indicators.

4.2 Shrug or Akimbo
In Figure 8, we plot each action’s distribution of indicator
responses. There appears to be little difference in the dis-
tribution of each action’s responses, for the population as a
whole.

4.3 Action or No Action
To see the utility of the current set of gestures (versus not
gesturing), we compare indicator responses during times of
robot inaction to the captured action indicator responses.
We note more variance after the periods of no action, com-
pared to the periods after an action. We see that the periods
following actions result in a slightly more equal measure of
participation, compared to periods of no action. However,
we see periods following no action have a higher increase in
Word Co-Occurrence, than periods after an action. Actions
seem to be associated with an increase in valence. Actions
do not appear to be associated with arousal.

Figure 8: Average change in indicator after an action com-
pared to no action taken.

5. DISCUSSION
As shown in Table 1, the “akimbo” action is on average,
followed by a period of more equal MoP for some dyads,
thus potentially being correlated to improved student bal-
ance of participation. The shrug action also is associated
with a period of more equal MoP. To reiterate, Emma’s ac-
tions accompany her dialogue. Therefore, these indicator
responses may be due to students reacting to some combi-
nation Emma’s of dialogue and gesture. We also note that
the shrug action, and associated language, are associated
with a higher student valence, and lower arousal.

Figures 3, 5, and 6 highlight a hidden source of variance;
student groups respond in significantly different ways to
Emma’s actions. The group’s response distributions have
different variances, means, and magnitudes. This source of
variance needs to be captured in the virtual environment
used to train the RL policy that controls Emma’s actions.
At the beginning of a session in the virtual environment, a
group should be randomly and blindly selected to be used
to model the indicator responses.

Notably, some trends are similar between groups. For exam-
ple, in Figure 6, We see that groups 2 and 12 have similar
action response distributions for both the akimbo and shrug
action. Groups 2 and 12 also respond similarly in terms of
valence, in Figure 5. In Figure 3, groups 3 and 13 appear to
respond similarly to actions with respect to MoP. Additional
sessions may provide additional insight towards whether or
not there are trends that exist between groups.

6. CONCLUSION
This study describes some of the potential effects an intelli-
gent agent’s actions have on indicators that depict balance
of participation, lexical entrainment, and student emotion,
in a setting where two students teach math concepts to an
intelligent social robot.
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